Prices Online Include GST      0800 50 55 66

Industrial Wastewater Solutions



Ensure Instrument Reliability, Cost Efficiency and Compliance

At Hach ®, we embrace the challenge to continuously improve wastewater treatment monitoring equipment and processes to help your industrial plant stay in compliance and ensure instrument reliability. Best of all, Hach solutions will help control costs while operating at the highest possible levels of health and safety.

Featured Products

AS950 All- Weather Refrigerated Sampler

Accurate, easy and intuitive, the AS950 simplifies your sampling process with a large, full-color display, USB upload and download capabilities, and the ability to copy programs sampler to sampler to save time on tedious programing.

Shop Now

HQ430D Water Quality Laboratory BOD Meter

Take the guesswork out of BOD measurement with the HQ430D. HQD® meters connect with smart IntelliCAL® electrodes that automatically recognize the testing parameter, calibration history, and method settings to minimize errors and setup time.

Shop Now

Solitax ts- line sc immersion probe

The Solitax ts-line sc immersion probes provide accurate, color-independent suspended solids and turbidity measurements. This system’s reliable performance and full data communication capability help improve process control and reduce treatment cost.

Shop Now

Minimise Process Downtime

The Hach BioTector B7000 online analyser offers a complete TOC measuring solution from sample preparation to outlet.This analyser achieves precise results, even in the most demanding applications due to a patented self-cleaning oxidation technology that easily handles difficult samples and significantly reduces maintenance.

Shop Now

Ammonia Analysers

Knowing your  Ammonia levels with seasonal or daily fluctuations is critical to save you money and keep your plant running smoothly.  Improved performance, meeting compliance with strict ammonia limits, and chemical expenditure reductions are some of the major benefits that can be achieved from adopting real-time nutrient monitoring.
 AMTAX sc:  High precision process-instrument for the determination of ammonium in wastewater and activated sludge.

  1. Fast 5 minute response time
  2. Automatic cleaning and calibration
  3. Extensive self-diagnosis
  4. Wall, rail, or stand mountable
Shop Now

Dissolved Air Flotation (DAF) Optimisation

Does your facility dose chemical based on flow rate? This can lead to wasted chemicals, increased hauling costs, and potentially fines. Our suspended solids sensors can help you dose based on solids concentration, optimising your chemical use and saving you money.

SOLITAX sc: High-precision process probe to determine turbidity and suspended solids. Colour independent method with a dual-beam infrared/scattered light photometer.

  1. Colour-independent measurement of solids
  2. No calibration
  3. Excellent correlation to laboratory analysis
  4. Proven cleaning system
  5. Improve overall efficiency of the plant
Shop Now

Cost Savings From Efficient Aeration Control

If you are interested in lowering energy and maintenance costs, we have products with innovative luminescent technology to monitor dissolved oxygen and optimise your aeration control with minimal maintenance requirements.

LDO2 sc: Immersion or flow-through probe with optical luminescence measuring method. Calibration-free & drift-free.

  1. Extremely reliable – 5 year warranty on probe
  2. The optimised temperature sensor and the new 3D factory calibration make O2measurement even more accurate
  3. No electrolyte or membrane changes necessary
  4. Remote functions for simple and convenient data transfer via Internet and SMS
  5. Constantly provides information on the current sensor status via PROGNOSYS early warning system
Shop Now


Industrial Wastewater Treatment: Critical Measurements

Learn which measurements are critical throughout the wastewater treatment process.

Pre-Treatment

Pre-Treatment of Water Used in Production

During the pre-treatment process, various treatment methods will be utilized, depending on the contamination and the concentration of incoming water from the plant's production side. For instance, pH control can be accomplished by adding a chemical to adjust pH for the other steps in the process. Solids may also be removed as a preliminary treatment process. This may include DAF (Dissolved Air Floatation) to remove solids, fats, oils and/or greases. Some chemical plants may use a DAF as a way of removing chemical contaminants that separate or float. Chemical addition of coagulant also are used in these processes.

We understand your need to measure specific points throughout the wastewater treatment plant. For example, 70% of plants are pre-treatment only and partner with a municipality for the wastewater treatment and 30% have a wastewater treatment plan onsite. Each plant has unique needs but in general here are the points of measurement you are likely most concerned with:

  • Knowing the pH can help determine the treatment processes required. Certain coagulants may work best at a given pH range so making these adjustments can help improve the process.
  • Identifying the incoming Total Suspended Solids can help determine dosing of those coagulants and air needed to remove the solids. Taking the TSS measurement at the end of the DAF would tell you the efficiency of the process.
  • Total Organic Carbon (TOC) can also be monitored and used for the same type of control depending on the process. Removing as many solids as possible can help maintain the loading and eliminate huge process fluctuations in the biological portion of the plant.

Bulk Tank

The bulk tank is used to hold and equalize the process waste stream. This process helps to gain more stable influent into the wastewater process. Many industrial sites require a bulk tank for firefighting purposes, in the case of a fire emergency. Measurements taken here can give insight as to the treatment processes needed, such as organic loading. Heavier than normal contamination or upset conditions can make for process management issues. Knowing when these are happening can help determine the steps required to maintain control.

Stormwater Tank

Stormwater from a plant can consist of a collection of all water from storms and/or potential spills in traffic areas such as loading docks and parking lots. Chemical spills, diesel fuel, gas, oil and other contaminants need to be monitored and treated before discharged. TOC is becoming very common as a measurement parameter for looking at contaminating levels in these waters. Dissolved oxygen and pH can also give valuable insights into stormwater. During a heavy rain event, larger than usual quantities of water will enter the stormwater tank. This can be good and bad. Dilution of some of the higher contaminated contents helps but it can also make for higher levels of treatment. Separation of high level contaminants can help in the treatment process.

Biological Wastewater Plant

Inlet

During the inlet stage, wastewater is passed through a screen to remove grit and large suspended solids. What is called raw sewage or influent can go through a few different processes depending on what is in the waste stream. Some plants combine process waste with site sanitary sewer. Typically, bar screens are used to remove large contents such as rags, rocks, dirt and grit from the influent.

Primary Treatment

During primary treatment, primary clarifiers allow organic solids to settle through gravity, while fats, oils and greases are allowed to float to the surface. The settled solids are referred to as primary sludge and often are thickened in a downstream process before delivery into an anaerobic digester. The floating fat, oil and grease are collected from the surface and are typically added directly to the anaerobic digester. A typical primary clarifier will remove approximately 70% of the solids and 45% of the Biochemical Oxygen Demand (BOD) from the screened wastewater. Modern facilities that operate enhanced biological nutrient removal processes often extract or ferment the carbon in the primary sludge and dose this side stream into anaerobic or anoxic processes downstream, as a food source for microorganisms.

Having a clear understanding of pH and TSS can be of great help in process control at this stage. However, flow rate changes can have a large impact on process control. High organic loading can also impact the process. Knowing as much about your sample can give the operators the ability to react to those changes.

Secondary Treatment

Secondary treatment removes the soluble organic matter, nutrients such as nitrogen and phosphorus and most of the suspended solids that escape primary treatment. Most often, biological processes are used in which microbes metabolize organic compounds and nutrients to grow and reproduce. The two most common biological secondary treatment processes are attached to growth and suspended growth systems. A suspended growth process fosters the growth of suspended microorganism flocs from individual organisms already present in the wastewater and in the return activated sludge. The flocs contain organisms that can remove the pollutants through aerobic, anoxic and anaerobic environments. Once the pollutants are removed, the flocs are sent to a secondary clarification process where they separate from the water via gravity. A portion of sludge in the bottom of the secondary clarifier is then directed back upstream to blend with the primary effluent (Return Activated Sludge) to create mixed liquor. The remainder of the sludge is removed from the process (Waste Activated Sludge) to create the ideal ecology of microorganisms. Attached growth systems rely on the microorganisms to attach to a media and create a biofilm. The settled sewage is either mixed or sprinkled over the biofilm-coated media where the microorganisms remove the pollutants. Like the suspended growth process, biofilm fragments and suspended flocs are sent to a secondary clarifier for separation where sludge is recycled and wasted and clean water is discharged to the next process.

For biological treatment to function efficiently, microorganisms require nutrients in a balanced ratio, including carbon, nitrogen and phosphorus (referenced as C:N:P), as well as trace elements including iron, copper, zinc, nickel, manganese, potassium, sulfur and other components which are typically present in wastewater. The commonly accepted C:N:P Ratio is 100:5:1, although some facilities thrive outside of this ratio, while others experience polysaccharide slime formation or filamentous bacteria growth that inhibit the biology and settling in the secondary clarifier.

Multiple biological processes can be employed to complete secondary treatment, including plug flow aeration basins, complete mix aeration tanks, sequencing batch reactors, oxidation ditches, trickling filters, moving bed biological reactors, integrated fixed-film activated sludge and others.

Biological Nutrient Removal (BNR) alters the environment of the microorganisms to remove nitrogen and phosphorus from the water. A BNR process consists of anaerobic (no oxygen or nitrate), anoxic (no oxygen, nitrate is present) and aerobic (oxygen present) stages, during which the water is moved through a series of chambers to perform various biological functions.

Chemical treatment processes can also be used, such as the chemical removal of phosphorus. By introducing a chemical precipitant within the aeration basin and clarifiers, phosphorus is removed by flocculation, binding into insoluble compounds that settle out and can be removed as sludge.

Sludge Separation

The method for handling the sludge removed from the process depends on the volume of solids as well as other site-specific conditions. Aerobic digestion is often used by facilities less than eight million gallons per day of inflow. Waste Activated Sludge and if present, Primary Sludge, are added to an aerated reactor where microorganisms feast on the organics and microorganisms present in the sludge to reduce the volatile solids content and the overall mass of sludge. Anaerobic digestion is typically used at facilities greater than eight million gallons per day of inflow and involves the use of sealed reactors to create an anaerobic environment for different organisms to feast on the organics and microorganisms in the sludge through the processes of acidogenesis and methanogenesis. The methane formed by anaerobic digestion can be used to fuel boilers to heat the digester, flared or cleaned and repurposed as a green energy source. Removal of the heavy solids helps to reduce the load on the plant, leaving only the dissolved and small organics left to treat. Monitoring the sludge levels in the primary clarifiers can determine the rate of removal.

Maintaining a healthy sludge level blanket in the clarifier is important for the removal process. Too light a blanket and the process can be upset by the removal arm. Flow rates can be determined by knowing this measurement.

Sludge Management

Thickening involves concentrating the sludge by removing a percentage of the liquid portion by adding polymer compounds and is often employed before anaerobic digestion. Dewatering with belt presses, centrifuges or other means further concentrates sludge into a cake. The cake can be further dried or simply disposed of through land application or landfills.

Effluent

During the outlet stage, techniques such as filtration, disinfection and carbon absorption are used to remove the remaining organic load, suspended or dissolved solids, pathogens and heavy metals that pass through other treatment processes. The goal of this stage is to raise the effluent quality to the level suitable to its intended use, whether for discharge into lakes, rivers or oceans, reuse as non-crop irrigation (parks, golf courses, greenways, etc.,) or for groundwater recharge.

Final Effluent Compliance

Whether your discharging directly to a body of water or indirectly discharging to a publicly owned treatment works (POTW), Hach has specialized solutions to ensure you meet compliance requirements.

Hach provides the right solution for your specific application. With almost a decade of experience delivering the right solutions and the greatest number of EPA approved methods, Hach is your trusted partner in wastewater analysis.

Hach Solutions for Your Industrial Wastewater Needs:

Samplers

Lab Instruments

Probes and Sensors

Analyzers

Controllers


+

+

=

Your
Solution

Data Quality with Mobile Sensor Management

Quick Status Check

Many plant managers have concerns about trusting their data. Hach customers typically trust their data after just three short weeks of adopting Claros process management solutions.

Mobile Sensor Management allows you to view your measurements and instrument status—anytime, anywhere on any web-enabled device. The included Prognosys Predictive Diagnostic Software monitors the instrument’s internal components and tracking service requirements. Then, Mobile Sensor Management alerts you to upcoming maintenance tasks or identifies immediate issues requiring attention. It also provides simple maintenance instructions in the palm of your hand to give operators and plant managers the confidence that the maintenance is being done correctly.

Avoid Downtime

With Mobile Sensor Management, you can avoid unexpected downtime and have confidence in your water quality measurements.

Worry-Free Data Security

Keep Your Data Safe

Data security is our priority. Hach is committed to protecting the integrity of your data, with comprehensive data security processes, continual evaluation and best-in-class partners such as Microsoft Azure to ensure data sovereignty and to eliminate opportunities for external intrusion. From data generation to transmission, storage and retrieval, Hach is committed to keeping your data safe, now and into the future

Industrial Wastewater Parameters

A variety of parameters are used in industrial wastewater pre-treatment, biological wastewater monitoring and receiving water discharge. Browse below to learn more about why these parameters matter. Or choose Shop Now to see solutions.

Alkalinity

Measuring alkalinity in water will inform its capacity to neutralize acids or absorb hydrogen ions. A slightly alkaline pH is important for effective biological treatment. The process of nitrification destroys alkalinity, which can result in a drop in pH, which will inhibit bacteria. Having visibility into your alkalinity will help avoid permit violations for ammonia and or pH.

Ammonia

Monitor conversion of ammonia and organic nitrogen forms to nitrite and nitrate during the WW treatment process. Provides information on process conditions in biological treatment stages. At high concentrations and pH, ammonia can be toxic to sludge digestion microbes.

Automatic Sampling

Automatic samplers are required to pull samples from different locations within a process so that laboratory tests can be performed. Samples may be collected as a composite or discreetly, depending on site and permit requirements.


BOD5 and CBOD

BOD5 and CBOD indicate a relative measure of “food” available, the degree of stabilization of the wastewater and estimate the effect of the effluent on the receiving water body. Used for plant loading/design, discharge rate for industrial facilities and EPA NPDES reporting. Many plants use COD or TOC as an early estimate. Used to calculate % removal.

Chemical Oxygen Demand

Used as a correlative/early indicator of BOD levels. Some NPDES permits include COD as a surrogate for BOD; however, BOD is the standard reportable parameter for oxygen demand in wastewater. COD provides a measure of organic “food” available to biological treatment steps and to estimate the effect of discharge to receiving water.

Chlorine Total and ULR

Chlorine is added to kill pathogens and reduce odor. Measuring chlorine will help ensure that your wastewater is properly disinfected by removing pathogens as well as satisfy regulations that require the removal of excess chlorine before discharge to surface waters.


Color

Color can be an indicator of turbidity or suspended matter. The removal of this matter can be gauged by measuring color, which can indicate if the water quality is suitable for discharge.

Conductivity

Measuring conductivity is a common method for determining the metal concentration in wastewater. Removal of these metals prevents environmental concerns. Conductivity is also an indicator of dissolved sodium which can assess stages of the treatment process that cause changes in conductivity.

Dissolved Oxygen

To stay alive, the organisms that breakdown organic matter rely on oxygen. When there is not dissolved oxygen present, these organisms will die. On the other hand, too much oxygen could signify that your wastewater treatment process is wasting energy. Measuring dissolved oxygen levels can help dial in the right amount of aeration.


Flow Meters

Flow measurement is crucial to a plant to know the volume and rate of the liquid passing through each process. These measurements are used to calculate loading and concentration factors for processing.

Nitrate

Nitrate is indicative of the stage of conversion of ammonia and organic nitrogen forms to nitrate by the aerobic biological treatment steps (nitrification).

Organic Acid

Determine if acidification has occurred during the effluent pre-treatment stage of your treatment process by monitoring pH and alkalinity. Making adjustments to pH and alkalinity balances organic acid.


Organic Load

Indicates the amount of carbon nutrients required to feed and keep healthy the microorganisms in the process aeration basin. This parameter gives an indication of efficiency of the anaerobic digester process.

ORP / Redox

Oxidation Reduction Potential is the ability for a solution to accept or lose electrons and therefore be “reduced.” ORP can help determine whether activated sludge zones are anaerobic or anoxic to enhance biological nutrient removal. They are best applied as a trending tool.

pH/Temperature

Maintain proper (narrow) pH range for optimal biological processes—especially nitrification. pH and temperature can indicate plant upsets by industrial discharges or the development of anaerobic conditions within the plant. It’s also an important parameter to assess methane formation and avoiding ammonia toxicity in sludge digesters.


Phosphate / Ortho

Phosphate is removed via biological nutrient removal processes and/or chemical precipitation. Reactive (ortho) phosphate is the phosphorus form that is most available to biological species.

Sludge Level

Having a clear measurement of sludge helps monitor sludge levels in the aeration tank, where sludge is mixed with air to breakdown organic matter. Monitoring sludge levels can indicate sludge buildup, process and chemical efficiency and sludge settleability.

Spectral Absorption
Coefficient

Measuring Spectral Absorption Coefficient is excellently suited to use as a regulation parameter for an ozone system.


Total Nitrogen

Total of ammonia, nitrate, nitrite and organic nitrogen forms.

Total Organic Carbon

TOC levels in water impact treatment and re-use decisions. With data on TOC levels, water managers can make the most efficient and cost-effective decisions for treatment and reuse of important water supplies.

Total Phosphorus

Phosphorus effluent concentrations are often controlled by discharge permits to limit the addition of nutrients to the receiving body. Total phosphorus may be removed either biologically or chemically. It includes ortho-, poly- and organic phosphorus.


Total Suspended Solids

TSS is the most commonly measured and regulated parameter on NPDES permits. Used to measure mixed liquor suspended solids concentration, return activated sludge/waste activated sludge concentration, influent suspended solids concentration, effluent suspended solids concentration and % removal.

Toxicity

COD is the sum parameter that provides the most reliable and timely information about the oxygen-depleting effects of organic pollutants in wastewater. COD also supplies an estimate of the effect of your plant’s effluent on the receiving body.

Turbidity

Turbidity is a surrogate measurement for solids concentration. This parameter often is used to indicate solids carry-over from secondary clarifiers.


The end result is crucial.

Nowhere is this more true than in the case of industrial wastewater, as failure to identify issues can cost manufacturers in respect of discharge limits and unnecessary inefficiencies. Hach has many years of experience working with industrial facilities to help them solve their unique wastewater challenges and has solutions specifically designed to meet the high demands associated with industrial wastewater.
Monitoring allows immediate identifcation of process changes that provide real-time information needed to keep the process running smoothly and efficiently.

With experience in laboratory and online water analysis, Hach can be relied upon to deliver the expertise and service that you need.